
Liang et al. BMC Medical Imaging           (2022) 22:52  
https://doi.org/10.1186/s12880-022-00766-w

RESEARCH

Development of CNN models for the enteral 
feeding tube positioning assessment on a small 
scale data set
Gongbo Liang1*, Halemane Ganesh2, Dylan Steffe2, Liangliang Liu3, Nathan Jacobs2 and Jie Zhang2* 

Abstract 

Background:  Enteral nutrition through feeding tubes serves as the primary method of nutritional supplementation 
for patients unable to feed themselves. Plain radiographs are routinely used to confirm the position of the Nasoenteric 
feeding tubes the following insertion and before the commencement of tube feeds. Convolutional neural networks 
(CNNs) have shown encouraging results in assisting the tube positioning assessment. However, robust CNNs are often 
trained using large amounts of manually annotated data, which challenges applying CNNs on enteral feeding tube 
positioning assessment.

Method:  We build a CNN model for feeding tube positioning assessment by pre-training the model under a weakly 
supervised fashion on large quantities of radiographs. Since most of the model was pre-trained, a small amount of 
labeled data is needed when fine-tuning the model for tube positioning assessment. We demonstrate the proposed 
method using a small dataset with 175 radiographs.

Result:  The experimental result shows that the proposed model improves the area under the receiver operating 
characteristic curve (AUC) by up to 35.71% , from 0.56 to 0.76, and 14.49% on the accuracy, from 0.69 to 0.79 when 
compared with the no pre-trained method. The proposed method also has up to 40% less error when estimating its 
prediction confidence.

Conclusion:  Our evaluation results show that the proposed model has a high prediction accuracy and a more accu-
rate estimated prediction confidence when compared to the no pre-trained model and other baseline models. The 
proposed method can be potentially used for assessing the enteral tube positioning. It also provides a strong baseline 
for future studies.
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Background
Enteral nutrition through feeding tubes serves as the pri-
mary method of nutritional supplementation for patients 
unable to feed themselves. The position assessment of the 
Nasoenteric feeding tubes is essential following insertion 
and before the commencement of tube feeds to avoid 

potential complications [1]. A plain radiograph is typi-
cally performed to confirm the placement of the feeding 
tube [2]. The feeding tube position assessment is straight-
forward but costly and time-consuming. Timely interpre-
tation of the radiographs remains a challenge affecting 
clinical decision to start tube feeds.

Recently, artificial neural networks (ANNs) have 
shown great potential to be an effective tool to detect 
and diagnose medical problems [3–5]. As a data-driven 
approach in the concept of supervised learning, ANNs 
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learn data features automatically from the given train-
ing set of samples and labels [6–8]. Deep convolutional 
neural networks (CNNs), as a subset of ANNs, have 
shown promising results in various medical imaging 
analysis tasks [9–11]. For instance, Esteva et  al. applied 
CNN models to dermatoscopy images for skin can-
cer diagnosis and achieved performance on par with all 
participated human dermatologists. Ribli et  al. used an 
rCNN-based [12] method for 2D mammograms classifi-
cation that achieved 0.95 AUC for breast tumor classifi-
cation [13]. Ying et  al. proposed a cross-modality ANN 
model for Alzheimer’s disease (AD) diagnosis that used a 
CNN to evaluate head MRIs and a multilayer perceptron 
(MLP) model to analysis the single-nucleotide polymor-
phisms (SNPs) information from Genome-wide associa-
tion study (GWAS) [14]. Their proposed model achieved 
a 0.935 AUC on AD diagnosis. However, robust CNNs 
commonly require large amounts of manually annotated 
data for training [15–18], such as ImageNet [19], which 
contains over one million images with labels. The pro-
hibitively high annotation cost often presents a barrier to 
adopting modern CNN techniques in the medical imag-
ing analysis tasks [20–23].

Transfer learning and pre-training are widely used 
in the medical imaging analysis that enables the train-
ing of CNN on small datasets [24–26]. In general, this 
includes three steps: first, a CNN model is pre-trained 
on a large dataset, such as ImageNet, for classification 
tasks; second, the feature extractor (i.e., the convolu-
tional layers) of the pre-trained model is selected to be 
used as the backbone building block of another CNN 
model; third, the newly built CNN model is fine-tuned on 
a small medical imaging dataset for the specific purpose. 
Transfer learning from the ImageNet dataset to medical 
datasets has shown a promising result in improving the 
network performance on small medical datasets [24, 26–
28], such a technique is also used to build enteral feeding 
tube positioning assessment models. For instance, Singh 
et al. transferred the ImageNet pre-trained model to the 
enteral feeding tube positioning assessment task and sig-
nificantly improved the small training set [24]. However, 
an obvious domain gap exists between ImageNet images 
(i.e., natural images) and medical images, raising con-
cerns about such a method [29].

We propose to use a novel pre-training method [30] to 
train CNN models on a small datasets for enteral feed-
ing tube positioning assessment. Different from the early 
study [24], our method uses radiological imaging reports 
as weak supervision to pre-train the feature extractor 
on a large radiograph dataset before transfer learning 
is applied to build the feeding tube positioning assess-
ment model. Radiological imaging reports are routinely 
collected in clinical practice and readily available in the 

medical record system. No additional manual labeling is 
required for pre-training of the proposed method. More 
importantly, the radiographs for pre-training are directly 
relevant to the enteral feeding tube positioning assess-
ment task, mitigating the domain gap between natural 
imaging and radiographs posed by pre-training on the 
ImageNet dataset.

Method
Model development
We previously developed a general pre-training strat-
egy, which used the radiology reports as weak supervi-
sion to pre-train a CNN model that improves the model 
performance on a given task [30]. This work extended 
the previous method to build an automatic enteral feed-
ing tube positioning assessment network using a small 
training dataset. We assume two datasets, XP and XL 
( |XP | ≫ |XL| ), exist, where XP contains paired of radio-
graphs and associated radiology reports and XL consists 
of labeled radiographs for enteral feeding tube position-
ing assessment. Our proposed network pre-trained the 
feature extractor of the enteral feeding tube positioning 
assessment model on XP directly without requiring man-
ually annotated labels. The feature extractor, then, was 
fine-tuned on XL for the enteral feeding tube positioning 
assessment. Figure  1 shows an example of a radiograph 
and the corresponding radiology report.

Pre‑training feature extractor via radiograph‑report 
matching
We pre-trained the feature extractor of the enteral feed-
ing tube positioning assessment model through a radi-
ograph-report matching network (Fig.  2), containing a 
textual report processing branch (Fig.  2a), a radiograph 
processing branch (Fig.  2b), and a contrastive learning 
module (Fig.  2c). The two branches worked simultane-
ously in parallel. The network took a radiology report 
and radiograph pair as input and predicted whether they 
were a natural match. Since label (i.e., match or don’t 
match) is known, no manual annotation will be required. 
This weakly supervised pre-training approach transfers 
the rich information in reports to the radiograph feature 
extractor without requiring manually labeled data.

Specifically, the textual report processing branch 
(Fig.  2a) took a radiology report as input and (1) 
passed the report through a pre-trained BERT (Bidi-
rectional Encoder Representations from Transformers) 
[32] encoder and a 1× 1 convolutional (Conv) layer to 
convert the natural language in the report to numeri-
cal embeddings, i.e., a sequence of numbers that can 
be processed by computer algorithms, (2) reduced the 
dimensionality of the embeddings by applying a global 
average pooling (GAP) operation, and (3) projected 
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the embeddings to a latent feature space by a fully con-
nected (FC) layer. The output of the textual report pro-
cessing branch was a feature vector that represented the 
report in latent space. Meanwhile, the radiograph pro-
cessing branch (Fig. 2b) took a radiograph as input and 
passed it through a ResNet-18 [15] feature extractor. 
The generated feature map was then passed through a 
Conv layer with 1× 1 kernels to transfer the pre-trained 
features to task-specific features. After that, an FC layer 
was used to embed the radiograph feature map to the 
latent space, which is the same as the textual report fea-
tures. The output of the radiograph processing branch 
was a feature vector in the latent space that represented 
the input radiograph. Next, the radiograph-report 
matching network was trained in a contrastive manner 
via the contrastive learning module (Fig. 2c). A shallow 

CNN classifier was added on top of the two branches 
that takes the absolute difference between the two fea-
ture vectors as input and ouputs whether the two fea-
ture vectors belonged to the same example.

Mathematically, the radiograph-report matching net-
work could be written as:

where xi = {xit , x
i
r} was a pair of a textual radiology 

report, xit , and a radiograph, xir from XP . Note that xit and 
xir may or may not match. The network hθp(·) predicted 
the probability of the input pair being a natural match. 
The hθcls(·) was the contrastive learning module, hθt (·) 
was the textual report processing branch, and hθr (·) was 
the radiograph processing branch. Binary cross-entropy 
loss was used to train the text-image matching network.

(1)hθp(x
i) = hθcls(|hθt (x

i
t)− hθr (x

i
r)|).

Fig. 1  An example of a radiograph (left) with the radiology report (right) from the MIMIC-CXR dataset [31]

Fig. 2  Illustration of the weakly supervised pre-training approach
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The input of the radiograph-report matching network 
was a radiology report and radiograph pair. A label was 
naturally assigned to each radiograph-report shwoing 
whether are from the same imaging event. A true pair 
meant the report describes the radiograph naturally; oth-
erwise, it was a false pair.

CNN for enteral feeding tube Positioning assessment
The enteral feeding tube positioning assessment model 
was trained by fine-tuning the feature extractor in the 
radiograph processing branch, hθr (·) , of the pre-trained 
network. The process was straightforward and illustrated 
in Fig. 3. The Conv layers in hθr (·) were used as the feature 
extractor in the enteral feeding tube positioning assess-
ment model. A Conv layer and two FC layers were added 
on top of the feature extractor to build the classification 
model for the enteral feeding tube positioning assess-
ment network, hθ (·) . The hθ (·) took radiographs from 
XL and predicted the probability of the enteral feeding 
tube positions being satisfied. Since the feature extractor 
was pre-trained using a larger dataset set from the same 
domain, we only need to optimize the hθ (·) from scratch 
that may use significantly reduce the need for the total 
number of training instances.

Enteral feeding tube positioning dataset
A dataset containing plain radiographs of 175 patients 
was retrospectively retrieved at a comprehensive tertiary 
academic medical center. All the images were inspected 
by a board-certified abdominal radiologist with more 
than 10 years of experience and a trainee. The dataset 
included 63 images where the enteral feeding tube posi-
tioning was unsatisfactory, and 112 images with a satis-
fying position. This retrospective study was approved 
by the Institutional Review Boards of the University of 
Kentucky.

The pixel values of radiographs were converted to the 
range of 0-255 using a window of 0-2750. The images 
were resized to 256× 256 and equally split into five folds 

for a fivefold cross-testing. Real-time data augmentation 
for the combination of a random horizontal flip and rota-
tion between 0 and 20 degrees was applied to the training 
data.

Model evaluation
Compared models
We compared the proposed model with the CNN mod-
els trained using four different pre-training strategies: 
(a) a CNN model without pre-training (denoted as 
No  Pre-Train), (b) a CNN model pre-trained on Ima-
geNet [19] (denoted as ImageNet), (c) a CNN model 
pre-trained using Compare to Learning [29], a state-of-
the-art self-supervised pre-training model for 2D medi-
cal images (denoted as C2L), and (d) a true random CNN 
model (denoted as Random). All models have the same 
architecture.

The No  Pre-Train model was a typical CNN model 
trained using the enteral feeding tube dataset only. No 
pre-training strategy was applied. All the weights of this 
model were randomly initialized before the training.

The ImageNet model was a CNN model that pre-
trained on the ImageNet dataset, a natural imaging data-
set containing over one million images of 1000 classes. 
Such a pre-training method is well-accepted and widely 
used in the medical imaging domain [26–28], which was 
also used in [24], an early study of enteral feeding tube 
positioning assessment using CNN models. The model 
was trained on the ImageNet dataset for a classification 
task and was fine-tuned using the enteral feeding tube 
dataset under the same approach of Sect. 2.1.2.

The C2L model was pre-trained using Comparing to 
Learn [29] on the MIMIC-CXR dataset [31] that was a 
self-supervised, pre-training method that was proposed 
for medical imaging analysis. The method pre-trained a 
feature extractor on MIMIC-CXR, containing 227,  835 
radiographic studies of 64,  588 patients that including 
368,  948 chest radiographs and the associated radiol-
ogy reports. The model, then, was fine-tuned using the 

Fig. 3  The enteral feeding tube positioning assessment network
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enteral feeding tube dataset under the same approach of 
Sect. 2.1.2.

The Random model was a CNN model with randomly 
initialized weights. The model was not trained with any 
data samples. The model performs random guessing for 
any input examples.

The proposed model was pre-trained using [30] that 
was proposed by our previous study. Specifically, the fea-
ture extractor of the proposed method was pre-trained 
on MIMIC-CXR for radiograph-report matching tasks. 
The detailed pre-training setup of the proposed method 
was described in [30]. After the feature extractor was 
pre-trained, the network was fine-tuned using the 
enteral feeding tube dataset under the same approach of 
Sect.  2.1.2. No radiology reports were needed for fine-
tuning or testing the enteral feeding tube positioning 
assessment model.

All the compared models were trained for five trials 
with a fivefold cross-testing strategy. We used three folds 
for training, one for validation, and one for testing. We 
repeated this process until all folds were tested. The val-
idation fold is used to select the best checkpoint of the 
model. Then, the selected checkpoint is used to test the 
model on the testing fold. The Cyclic learning rate [33] 
between 10−4 and 10−2 , Adam optimizer [34], and binary 
cross-entropy loss were used for the enteral feeding 
tube dataset training or fine-tuning. All the models were 
trained for 100 epochs. We used Python as the program-
ming language and PyTorch [35] as the scientific comput-
ing library to conduct the evaluation. For the ImageNet 
pre-trained model, we loaded the PyTorch pre-trained 
weights directly in to the model. The training was per-
formed on a GPU cluster that has a combination of 120 
Nividia P100 and V100 GPU cards. However, only one 
GPU card was used for the training at the same time.

Evaluation metrics
Four evaluation metrics were used in this study, namely 
the AUC, F1 score, accuracy, and the expected calibration 
error (ECE) [36]. The AUC, F1 score, and accuracy were 
used to evaluate models’ performance in making accurate 
predictions. All three metrics were bound between 0 to 1. 
A higher number indicated better performance. The ECE 
was used to measure neural network calibration error, 
i.e., how accurately the network estimates its prediction 
confidence, with a smaller value indicating a more accu-
rate representation of its prediction confidence. A per-
fectly calibrated neural network has a 0 ECE.

We defined the accuracy, AUC, and F1 score follow-
ing common practice. The ECE was defined as the same 
as [36, 37] by partitioning predictions into M bins and 
taking a weighted average of the difference of accuracy 
and confidence for each bin. More specifically, we first 

grouped all the samples into M interval bins according to 
the predicted probability. Then, let Bm be the set of indi-
ces of samples whose predicted confidence falls into the 
interval Im = (m−1

M ,
m
M ] , m ∈ M . The ECE can be calcu-

lated as:

where n was the number of samples, ŷi and yi were the 
predicted and ground-truth label for sample i, p̂i was the 
confidence of sample i, 1

|Bm|

∑

i∈Bm
1 · (ŷi = yi) was the 

accuracy of Bm , and 1
|Bm|

∑

i∈Bm
p̂i calculated the average 

predicted confidence of Bm.

Model interpretation
Integrated Gradients attribution mask (IG) [38] and 
occlusion sensitivity testing map (OCC) [39] are used 
as visualization methods to understand how predictions 
are made by the proposed model. IG is an interpretabil-
ity technique for CNN models that visualize the impor-
tant features that contribute to the model’s prediction. 
Higher values in an IG attribution mask indicate more 
important features in the decision-making process. OCC 
is a technique for understanding which parts of an image 
are most important for a CNN classification. The higher 
values in an OCC map indicate more important areas for 
the image during the CNN classification procedure.

Results
Table 1 presents the detailed evaluation result of the five 
models with the mean score and the 95% confidence 
interval of each evaluation metrics over the five trials. 
From the table, we can see that the proposed method has 
the best overall performance, which has better or compa-
rable performance to other compared models in all set-
tings. The C2L model achieves the second-best overall 
performance on prediction accuracy evaluation metrics 
but performs poorly on network calibration. The Ima-
geNet model wins third place. The No Pre-Train model 
has a better performance than the Random model and 
gets the fourth place. The Random model performs the 
worst.

The table shows that the Random model has a 0.49 
AUC, which is essentially random guessing. The No Pre-
Train model yields a 0.56 AUC. The ImageNet improves 
the number to 0.67. The C2L further improves it to 0.73. 
The proposed method has the highest AUC score of 
0.76. For the F1 score, the Random model, No Pre-Train 
model, and ImageNet model have F1 scores that are either 
close to 0.5 or lower, with the worse of 0.32 for the No 
Pre-Train model. The proposed method can improve the 

(2)

ECE =

M
∑

m=1

|Bm|

n

∣

∣

∣

∣

∣

∣

1

|Bm|

∑

i∈Bm

1 · (ŷi = yi)−
1

|Bm|
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F1 score by 100% when compared with the No Pre-Train 
model, from 0.32 to 0.64, which is also 20.75% and 3.13% 
higher than the ImageNet and C2L models, respectively. 
The C2L model has the highest accuracy, 79%, which is 
approximately 1% higher than the proposed model (78%). 
The No Pre-Train model and ImageNet model have 74% 
and 69% accuracy, respectively. The Random model has 
49% accuracy. The C2L model has the highest calibration 
error, 0.15 ECE, which is 66.67% higher than the pro-
posed method (0.09). Both the No Pre-Train model and 
ImageNet model have 0.12 ECE. The Random model has 
0.11 ECE.

Figures  4 and  5 show four examples of the enteral 
feeding tube positioning assessment results and 

corresponding Integrated Gradients attribution mask 
(IG) and occlusion sensitivity testing map (OCC). Fig-
ure 4 shows that for the correctly predicted cases, the IG 
and the OCC highlight the areas that critical to assessing 
the enteral tube positioning, while Fig. 5 shows that for 
the failure cases, the network was focusing on the areas 
that were less important to assessing the enteral tube 
positioning.

Discussion
The hypothesis of our proposed method transfers natu-
ral language to image features of the architecture during 
the radiograph-report matching stage. The radiograph-
report matching process pretrains the radiograph feature 

Table 1  Performance of each model (mean, 95% confidence interval)

Method AUC​ F1 Score Accuracy ECE
(larger is better) (larger is better) (larger is better) (smaller is better)

Random 0.49, [0.45 to 0.53] 0.39, [0.35 to 0.43] 0.48, [0.44 to 0.52] 0.11, [0.10 to 0.12]

No Pre-Train 0.56, [0.50 to 0.62] 0.32, [0.23 to 0.41] 0.69, [0.67 to 0.71] 0.12, [0.10 to 0.14]

ImageNet 0.67, [0.71 to 0.63] 0.53, [0.49 to 0.57] 0.74, [0.71 to 0.77] 0.12, [0.09 to 0.15]

C2L 0.73, [0.70 to 0.76] 0.62, [0.57 to 0.67] 0.79, [0.77 to 0.81] 0.15, [0.13 to 0.17]

Proposed 0.76, [0.71 to 0.81] 0.64, [0.58 to 0.70] 0.78, [0.75 to 0.81] 0.09, [0.07 to 0.11]

Fig. 4  Visualization of two correct predictions
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learning component parameters to the extent that it 
needs fewer supervised instances for the feeding tube 
positioning assessment task.

The result reveals that the Random model has an essen-
tial random performance (0.49 AUC and 48% accuracy) 
that sets the bottom-line performance of the enteral 
feeding tube positioning assessment task on this given 
dataset. The No Pre-Train improves the AUC and accu-
racy to 0.56 and 69%, respectively, which indicates the 
model did learn something about assessing the tube 
positioning from the training set. However, the low F1 
score of the No Pre-Train (0.32) may suggest that the 
model is extremely biased to one class when making the 
prediction. This unexpected behavior is likely due to the 
small size of the training data. It is widely accepted that 
transfer learning helps to improve model performance 
on a small dataset. As expected, all three transfer learn-
ing models have a better performance than the No Pre-
Train model. The ImageNet model improves the AUC 
to 0.67, the C2L model pushes the number to 0.73, and 
the proposed method achieved a 0.76 AUC. Though both 
the F1 score and accuracy are also improved by the three 
transfer learning models, the larger gap between the F1 
score and accuracy of the ImageNet and C2L models may 

indicate those two models also favor one class when mak-
ing the decision, especially for the ImageNet model.

Ideally, a predicting model should be able to reflect 
the uncertainty or the confidence of its prediction accu-
rately. Otherwise, it may be problematic. For instance, 
given k predictions with average prediction confidence 
of c ( c ≤ 1.0 ), we could expect ≈ k × c correct predic-
tions or an automatic ≈ c % accuracy. However, the 
average prediction confidence often does not match the 
accuracy for the modern deep neural networks [40–42]. 
ECE is the common metric to evaluate neural network 
calibration error. We believe accurately estimated CNN 
prediction confidence is extremely important to auto-
matic medical imaging analysis tools because an auto-
mated method that achieves high accuracy but captures 
prediction confidence inaccurately could lead to signifi-
cant treatment errors [43]. Table 1 shows that the pro-
posed model has the lowest ECE (0.09), which is 40% 
less than the C2L model and 25% less than the Ima-
geNet model. One reasonable explanation is the precise 
guidance of the proposed method helps reduce the ECE 
on the downstream application. The proposed method 
is pre-trained on radiographs with radiology reports 
that are more relevant to enteral feeding tube posi-
tioning assessment than ImageNet pre-training, which 
uses natural images to pre-train the network weights. 

Fig. 5  Visualization of two wrong predictions
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Though the C2L is also pre-trained on radiographs, the 
method uses a self-supervised strategy and provides an 
open ending to some degree.

By observing the correctly and wrongly predicted 
cases, we notice that most of the wrongly predicted cases 
are more challenging than the correctly predicted cases, 
even for human experts. For example, the first case in 
Fig. 5 contains other wires, which confuse the model. The 
IG and OCC show that the model pays more attention to 
those external wires when making the decision. The sec-
ond case in Fig. 5 contains stronger noisy patterns, which 
make the images harder to read. A direct approach to 
improve the performance of challenging cases is to obtain 
more training data of challenging cases. However, this 
may not be easy due to the high cost of data collection. 
Thus, we plan to tackle this scenario from the algorithmic 
perspective by adding weights to challenging cases and 
using boosting strategies.

One limitation of this study is the lack of a standalone 
dataset for testing since the dataset is small. We apply a 
fivefold cross-testing strategy to generate a more objec-
tive testing result. Such a strategy is widely used in other 
specific imaging domains [44, 45]. It may be more objec-
tive than regular fivefold cross-validation because the 
results are based on the unseen testing set, not the vali-
dation set. A multi-site, large-scale evaluation may still 
be needed for further testing before using the proposed 
method in clinical practice.

Conclusion
We propose a novel enteral feeding tube positioning 
assessment network, which can be trained using a small-
scale dataset. Our evaluation results show that the pro-
posed model has a high prediction accuracy and a more 
accurate estimated prediction confidence. The proposed 
method can be potentially used for assessing the enteral 
tube positioning. It also provides a strong baseline for 
future studies.
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